Penggunaan Naïve Bayes Classifier Untuk Pengelompokan Pesan Pada Ruang Percakapan Maya Dalam Lingkungan Kemahasiswaan

Muhammad Saiful Islam, M. Imam Fauzan P. P. N, Muhammad Taufiq Pratama

Abstract


Group chat feature provided by instant messaging service like LINE or WhatsApp in student environment has high importance, but not all of the conversation discussed were relevant with the mission of the group itself. With certain reasons, when lot of messages are unread, unaware users will see the first chats displayed on the screen, and will ignore or clear the rest. Thus, it is common for important messages to be ignored this way if they were placed on the middle of the unread chats. That stack of messages could be classified automatically, so users could get the information about the categories of the messages. This research test Naïve Bayes Classifier usage to classify messages in student usage environment, and we show that with good classification model, Naïve Bayes classifier performs well with F-measure score reaching 90,57% for one of the categories.  Keywords: naïve bayes classifier, instant messaging, text classification.

Full Text:

PDF

References


Adi, A. O. & Çelebi, E. (2014). Classification of 20 News Group with Naïve Bayes Classifier. 22nd Signal Processing and Communications Applications Conference (SIU), 2150-2153.

APJII, (2015). Profil Pengguna Internet Indonesia 2014. Diakses dari https://goo.gl/oI4txR

Barreiro, P. L. & Albandoz, J. P., (2001). Population and sample. Sampling techniques. Spain: Management Mathematics for European Schools.

Escalante, H. J., Montes-y-Gómez, M., Pineda, L. V. & Errecalde, M. L. (2016). Early text classification: a Naïve solution. 7th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, 91-99.

Destuardi, I. & Sumpeno, S. (2009). Klasifikasi Emosi Untuk Teks Bahasa Indonesia Menggunakan Metode Naive Bayes. Seminar Nasional Pascasarjana IX.

Escalante, H. J., Montes-y-Gómez, M., Pineda, L. V. & Errecalde, M. L. (2016). Early text classification: a Naïve solution. 7th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, 91-99.

Hamzah, A. (2012). Klasifikasi Teks dengan Naïve Bayes Classifier (NBC) untuk Pengelompokan Teks Berita dan Abstract Akademis. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) Periode III.

Hassan, S., Rafi, M. & Shaikh, M. S. (2011). Comparing SVM and Naïve Bayes Classifiers for Text Categorization with Wikitology as knowledge enrichment. Multitopic Conference (INMIC), 2011 IEEE 14th International.

Manning, C. D., Raghavan, P. & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge: Cambridge University Press.

Samodra, J., Sumpeno, S. & Hariadi, M. (2009). Klasifikasi Dokumen Teks Berbahasa Indonesia dengan Menggunakan Naïve Bayes. Seminar Nasional Electrical, Informatics, and IT's Education.

Ting, K. M. (2011). Encyclopedia of Machine Learning. Springer.

Triawati, C. (2009). Metode Pembobotan Statistical Concept Based untuk Klastering dan Kategorisasi Dokumen Berbahasa Indonesia. Bandung: Universitas Telkom.

Umar, H. (2004). Metode Penelitian untuk Skripsi dan Tesis Bisnis. Jakarta: PT Raja Grafindo Persada.

Paragian, Y. (2013). Laporan: mayoritas masyarakat Indonesia akses internet lewat perangkat mobile (slideshow). Diakses darihttps://goo.gl/c2luXU

Vijayarani, S., Ilamathi, M. J. & Nithya, M. (2015). Preprocessing Techniques for Text Mining-An Overview. International Journal of Computer Science & Communication Networks, 5(1), 7-16.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.