Curiosity by zulfa.eef@gmail.com 1

Submission date: 10-Sep-2024 11:14PM (UTC-0700)

Submission ID: 2450818599

File name: Exploring_the_Impact_of_Inquisitiveness_on_Technology_Adoption-English_-_Similarity.docx

(66.47K)

Word count: 3821

Character count: 23096

Exploring the Impact of Inquisitiveness on Technology Adoption and Creativity on Work Efficiency:
Insights from the Fashion Creative Industry in Bandung, Indonesia

Abstract

Technology plays a vital role in addressing key challenges in the fashion industry, including high personalization, environmental sustainability, and increased productivity. The aim of this study is to explore the impact of technological advancements on innovation in the fashion industry, particularly among SMEs in Indonesia. Additionally, this research will investigate Curiosity, technology readiness, creativity, and employee performance enhancement in the creative fashion industry. This research employs a survey approach in the creative fashion industry sector in Bandung City. Respondents consist of employees with a minimum of 1 year of experience in fashion companies in Bandung City, selected through simple random sampling. Out of 322 respondents, data is tested for the proposed research model. The validity and reliability of the instruments will be tested for the first-order and second-order models. Structural analysis and Structural Equation Modeling are utilized to generate a valid research model prediction.

The findings confirm that Curiosity significantly influences technology readiness and creativity in the Bandung fashion industry. The intrinsic drive to seek additional information stimulates innovation and employee performance. Individuals with a strong sense of curiosity tend to be more prepared to embrace technology, enhance creativity, and demonstrate superior task performance. The profound impact of Curiosity on Technology Readiness and Creativity towards task performance demonstrates a complex aspect of originality. Employee performance, involving behavior and actions in task completion, is closely linked to these factors. Curiosity encourages exploration of new technologies, innovative thinking, and creative approaches to tasks. Employees who exhibit curiosity, technology readiness, and creativity tend to excel in their work, bringing new perspectives, innovative solutions, and high engagement in the Bandung fashion industry. The limitations of this study include the need for further research to explore the long-term effects of Curiosity, technology readiness, and creativity on task performance. Future studies could investigate the role of other factors such as organizational support and individual motivation in shaping employee performance in the creative fashion industry. Subsequent research could deepen the understanding of specific industry contexts, delve further into leadership, or explore the intersection of individual and organizational factors on performance outcomes.

Keywords: Curiosity, Technology Readiness, Creativity, Task Employee Performance.

Introduction

The evolution of technology is on the rise, and its application in daily life is proving to be beneficial for problem-solving (Li, Dai & Cui, 2020; Myovella, Karacuka & Haucap, 2020; Vu, Hanafizadeh & Bohlin, 2020). Harnessing technology can facilitate the development of superior products, enhance the capabilities of existing products, introduce new components,

and create knowledge-based products and services (Srinivasan & Venkatraman, 2018; Giones & Brem, 2017; Song, 2019). The challenge of boosting Indonesia's knowledge-based economic advantage necessitates collaboration from various stakeholders, given the country's suboptimal position in the global economic index (UNDP, 2021; Acs et al., 2021; Dutta, Lanvin, León & Wunsch-Vincent, 2021). The utilization of technology is a critical concern for Indonesia, which boasts a large population and a demographic dividend as an opportunity. However, the skills of the workforce do not align with global requirements, highlighting the importance of creativity and technological readiness based on data from the World Economic Forum in 2023 (Di Battista et al., 2023; Lim, 2023; Dumitru & Halpern, 2023; Abdul Hamid, 2022). Therefore, it is essential to assess the capabilities of the workforce in the creative fashion industry to leverage technological advancements for task completion and improved living standards. The creative fashion industry's contribution to Bandung City's economy in 2022 is estimated at 17% of the GRDP. Challenges in technology utilization have been pinpointed by the Department of Tourism and Culture of Bandung City, necessitating the enhancement of the workforce in the creative fashion industry, including content development, creativity, and suboptimal technology, high software costs for producing creative products and services, insufficient content research, and inadequate content archiving activities. Additionally, human resource development in the creative economy remains suboptimal (Disbudpar, 2023). Readiness in utilizing technology and fostering creativity are crucial for individuals in fulfilling their tasks, influenced by individual curiosity. To capitalize on technological advancements and individual creative potential, a curiosity for seeking information needs to be cultivated to enhance readiness in using technology and creativity optimally, positively impacting organizational performance.

The foundation of prosperity and the creation of knowledge-based economic wealth are driven by the knowledge economy, efficient and effective technology utilization, and innovation (Srinivasan & Venkatraman, 2018; Sussan & Acs, 2017; Nambisan, 2017). The digitalization process has accelerated and reduced operational barriers for organizations, broadening the customer base, securing financial support, fostering rapid growth, and enabling flexible and productive work mechanisms (Giones & Brem, 2017; Song, 2019; Björkdahl, 2020). Companies need to embrace a creative and innovative mindset to generate new ideas, recognize market gaps, identify opportunities, seize them, and create added value (Anderson, Potočnik & Zhou, 2014; Lee et al., 2020; Gouvea, Kapelianis, Montoya & Vora, 2021). Readiness to use technology and creativity, based on curiosity, forms the foundation of intellectual capacity, knowledge, thinking style, problem-solving interest, and supportive environments (Koutstaal, Kedrick & Gonzalez-Brito, 2022; El-Kassar et al., 2022; Acikgoz, Elwalda & De Oliveira, 2023). Creativity serves as the cornerstone of innovation, enabling the exploitation of new opportunities stemming from environmental changes and requiring collective and creative efforts to trigger the innovation process (AlEssa & Durugbo, 2022; Afsar & Umrani, 2020; Grošelj, Černe, Penger & Grah, 2020).

Research findings by Venkatesh, Speier & Morris (2002) and Venkatesh, Speier-Pero, Aljafari & Bala (2022) highlight the Technology Acceptance Model (TAM) as a tool to understand how user perceptions are formed before implementing a system. The studies also indicate that technology plays a supportive role in communication with consumers. Adebanjo,

Laosirihongthong, Samaranayake & The (2021) and Flores, Xu & Lu (2020) reveal that the dimension of human capital readiness is recognized as crucial for implementing Industry 4.0 technologies. Research by Albors-Garrigos (2020), Huynh (2021), and Casciani, Chkanikova & Pal (2022) demonstrates that collaboration with suppliers and startups is essential for success in the creative fashion industry. Effective use of information systems plays a vital role in decision-making, planning, and human resource management in the fashion industry's creative processes.

Recent research by Dissanayake & Weerasinghe (2021), Hoque, Rasiah, Furuoka & Kumar (2021), Park-Poaps, Bari & Sarker (2021), Castañeda-Navarrete, Hauge & López-Gómez (2021), and Jin & Shin (2021) indicates that in the era of the 4.0 industrial revolution, technology can address key challenges in the fashion industry, such as hyper-personalization, environmental sustainability, and increased productivity. This suggests that technology adoption is a crucial factor in the fashion industry, including areas like 3D design and modeling, digital technology, e-commerce, and digital platforms (Sun & Zhao, 2017; McQuillan, 2020; Huynh, 2021). Findings from studies by Acikgoz, Elwalda & De Oliveira (2023), Wijewardhana, Weerabahu, Nanayakkara & Samaranayake (2021), and Watat & Bonaretti (2022) suggest that curiosity is an indicator that can enhance technology adoption readiness. Similarly, research by Koutstaal, Kedrick & Gonzalez-Brito (2022), Gross, Zedelius & Schooler (2020), and Manik et al. (2023) indicates that curiosity can influence individual creativity within an organization.

Research by Zhang, Shi & Gale (2021), Ahmad, Miskon, Alabdan & Tilii (2020), and Sehnem et al. (2024) also suggests that technological advancements create situations and opportunities for innovation in various aspects of the fashion industry. However, many SMEs in Indonesia are not adequately prepared in terms of competent IT personnel and face limitations such as inadequate network infrastructure and internet connectivity (Priambodo, Sasmoko, Abdinagoro & Bandur, 2021). Additionally, communication network instability and limited telecommunications infrastructure pose challenges (Sun, Wang & Jeyaraj, 2020; Tønnessen, Dhir & Flåten, 2021; Wang & Hu, 2020). Previous research indicates a gap in studying the influence of curiosity on technology readiness, creativity, and its implications for enhancing employee performance in the creative fashion industry.

Research Method

This research employed a survey approach conducted in the creative fashion industry sector in the city of Bandung. The respondents sampled were employees who had been working for at least 1 year in fashion companies in Bandung using simple random sampling technique. From the survey results, 322 respondents, who are employees in the creative fashion industry in Bandung, were used as the data for testing the proposed research model.

The research model development consists of four variables: Curiosity, which is an individual's drive to seek additional information or specific interest in something to achieve specific goals, referencing instruments from Kashdan et al. (2009), Próchniak & Ossowski (2023), and Yow, Ramsay, Lin & Marsh (2022). Technological readiness refers to employees' tendency to adopt and use new technologies to achieve goals in their work environment, referencing instruments from Parasuraman & Grewal (2000), Parasuraman & Colby (2015), and Blut & Wang (2020).

Technological readiness measurement assesses innovation, optimism, insecurity, and discomfort. On the other hand, Creativity is the ability to generate valuable new ideas, closely related to innovation, involving integrating future vision with past experiences and knowledge. Individuals use logical and intuitive abilities in their brains to be creative and generate new ideas, referencing De Jong & Den Hartog (2010), Janssen (2000), and Sidharta et al. (2023).

Creativity requires a focused mindset and enthusiasm to embrace uncertainty, referencing AlEssa & Durugbo (2022), Afsar & Umrani (2020), and Amabile (1988). Creativity measurement assesses idea generation, idea promotion, and idea implementation. Employee performance refers to the behaviors or actions individuals take to complete their tasks in the workplace, referencing Aguinis, Gottfredson & Joo (2012), Casu et al. (2021), Na-Nan, Chaiprasit & Pukkeeree (2018), and Koopmans et al. (2014).

The researcher tested the validity and reliability of the research instruments for both first-order and second-order models to ensure the authenticity of the research instruments to be used. After conducting validity and reliability tests, the researcher will proceed with further testing using structural analysis to generate research model predictions. Data analysis will be conducted using Structural Equation Modeling approach to produce valid research, as one of the innovations in research in the creative fashion industry sector. Model fit testing will use the approach recommended by Hair et al. (2022) and Becker, Cheah, Ringle & Sarstedt (2023), namely the Bias-corrected and accelerated (BCa) bootstrap distribution with 10,000 resampled data.

Result and Discussion

The comprehensive overview of respondent characteristics from the survey results includes information on gender, age, education level, type of business, business scale, and years of work experience. By analyzing this data, a better understanding of the profile of respondents involved in the survey is expected to be obtained.

The number of female respondents is higher than male respondents, with females making up 55% of the total. The majority of respondents fall within the 30-year age range, accounting for 60% of the participants. This indicates that this age group is the most actively engaged in the survey. On the other hand, respondents aged 41 and above are relatively fewer, comprising only 16% of the total. Respondents predominantly hold a high school education, with 67% having completed this level. This suggests that secondary education is the most common educational background among the respondents. In contrast, those with junior high school education are very few, at only 3%, while respondents with a diploma or bachelor's degree make up 30%.

The fashion sector is the most represented among respondents, with 44% involved in this industry. This indicates a significant interest in the fashion sector among the respondents. The knitting and footwear sectors also make a notable contribution, although in smaller numbers compared to the fashion sector. The majority of respondents work in medium-sized

businesses, accounting for 49%. Small businesses follow with 29%, and micro-enterprises are the least represented at 22%. This suggests that respondents are more engaged in businesses of a moderate scale. Most respondents have 3 years of work experience, making up 53% of the total. This indicates that many respondents are relatively new to the workforce, while those with over 8 years of work experience account for 21%.

Table 1. First Order validity and reliability test

	CE	CS	Composite reliability (rho_a)	AVE	НТМТ	VIF
CE1	0.616		0.775	0.508	0.721	1.551
CE2	0.724					1.321
CE3	0.731					1.636
CE4	0.775					1.712
CE5	0.710					1.370
CS1		0.779	0.883	0.679		1.934
CS2		0.850				2.493
CS3		0.847				2.414
CS4		0.824				2.267
CS5		0.818				2.165

The results of the First Order validity and reliability test, as shown in Table 1, indicate loading factors ranging from 0.616 to 0.850, which signify good values. The calculated composite reliability values of 0.775 and 0.883 also demonstrate strong reliability. Additionally, the AVE values of 0.508 and 0.679 suggest good factor variation. The discriminant validity score of 0.721 is below 0.9, and the VIF values ranging from 1.321 to 2.493 are less than 5. These criteria, based on Hair (2021) and Chin (1998), point to good validity and reliability in the study.

Table 2. Second Order Loading Factor

	Curiosity	Creative	Technology	Task	Composite reliability (rho_a)	AVE	VIF
CE	0.891				0.794	0.820	1.699
CS	0.920						1.699
Cre1		0.766			0.958	0.659	3.231
Cre2		0.829					4.284
Cre3		0.834					3.232

Cre4	0.827					3.260
Cre5	0.834					3.265
Cre6	0.673					1.849
Cre7	0.748					2.109
Cre8	0.833					3.295
Cre9	0.863					3.860
Cre10	0.806					2.964
Cre11	0.816					3.007
Cre12	0.861					3.819
Cre13	0.844					3.316
Tech1		0.776		0.904	0.543	3.639
Tech2		0.800				3.874
Tech3		0.837				2.937
Tech4		0.830				2.731
Tech5		0.748				1.882
Tech6		0.652				1.942
Tech7		0.675				1.916
Tech8		0.735				1.864
Tech9		0.522				1.323
Tp1			0.861	0.908	0.720	2.595
Tp2			0.863			2.574
Tp3			0.862			2.603
Тр4			0.884			2.955
Tp5			0.766			1.883

The outcomes of the Second Order validity and reliability test, as illustrated in Table 2, reveal loading factors ranging from 0.522 to 0.920, indicating strong values. The calculated composite reliability values of 0.794 to 0.958 demonstrate good reliability, while the AVE values of 0.543 to 0.820 suggest satisfactory factor variation. The discriminant validity HTMT values shown in Table 3 range from 0.725 to 0.861, which are below 0.9. The VIF values between 1.323 and 4.284, with most being less than 4, indicate good model fit. Only one indicator, item Cre1, has a VIF value exceeding 4 at 4.284. These indications, following the criteria outlined by Hair, Risher, Sartstedt & Ringle (2019), point to strong validity and reliability in the study.

Table 3. Discriminant Validity Heterotrait-Heteromethod Ratio (HTMT)

Heterotrait-Heteromethod Ratio (HTMT)						
	Creative Curiosity Technology Technology					
Creative						
Curiosity	0.861					
Task	0.839	0.802				
Technology	0.785	0.759	0.725			

The results of the structural model testing, as presented in Table 4, indicate that the research hypotheses have been proven to be statistically significant.

Table 4. Path Coefficients, f-square, R-square, Q²predict, RMSE, MAE and Hypotheses testing

Path	Coefficients	f-square	Standard deviation	P values	Decision
Creative -> Task	0.634	0.511	0.060	0.000	Significant
Creative -> Technology	0.525	0.281	0.065	0.000	Significant
Curiosity -> Creative	0.748	1.269	0.032	0.000	Significant
Curiosity -> Technology	0.276	0.078	0.075	0.000	Significant
Technology -> Task	0.205	0.053	0.057	0.000	Significant
	R-square	Q²predict	PLS_RMSE = LM_RMSE	PLS_MAE = LM_MAE	Predictive Relevance
Creative	<mark>0</mark> .559	<mark>0</mark> .556	<mark>0</mark> .669; <mark>0</mark> .672	<mark>0</mark> .514; 0.517	Large
Technology	0.568	0.440	0.756; 0.761	0.569; 0.580	Large
Task	0.634	0.458	0.662; 0.672	0.495; 0.511	Large

In Table 4, the Construct creativity (R-square = 0.559; Q²predict = 0.568), technology (R-square = 0.568; Q²predict = 0.440), and task performance (R-square = 0.634; Q²predict = 0.458) values show Predictive Relevance classified as "large" due to R-square and Q²predict values exceeding 0.50. Specifically, construct technology and task performance have Q²predict values greater than 0.25, indicating a "medium" level. (Hair Jr, Howard & Nitzl, 2020) Additionally, Path coefficient calculations reveal that Creativity on Task with a Path Coefficient of 0.634 indicates a strong positive influence of Creative variable on Task. The f-square value of 0.511 suggests high relevance predictive effect size. Curiosity on Creative with a Path Coefficient of 0.748 shows a very strong positive impact of Curiosity on Creative. The high f-square value of

rticle Error 📧

1.269 indicates high relevance predictive effect size. Moreover, Creativity on Technology with a Path Coefficient of 0.525 indicates a significant positive relationship between creativity and technology. The f-square value of 0.281 signifies a medium relevance predictive effect size.

On the other hand, Curiosity on Technology with a Path Coefficient of 0.276 demonstrates a weak relationship between curiosity and technology. The F-Square of 0.078 suggests a small relevance predictive effect size. Furthermore, Technology on Task with a Path Coefficient of 0.205 reveals a weak connection between technology and tasks. The F-Square of 0.053 indicates a small relevance predictive effect size. The analysis results highlight that the relationships between Creative and Task, as well as between Curiosity and Creative, exhibit high predictive relevance. In contrast, the connections between Creative and Technology, Curiosity and Technology, and Technology and Task show lower levels of predictive relevance.

Table 5. SRMR and CVPAT-PLS Predict Result

SRMR		3	
	Original sample (O)	95%	99%
Saturated model	0.058	0.043	0.046
Estimated model	0.059	0.043	0.046
CVPAT-PLS-SEM			
Indicator Average (IA)	IA loss	Average loss difference	p value
Creative	0.703	-0.254	0.000
Task	0.674	-0.221	0.000
Technology	0.834	-0.182	0.000
Overall	0.741	-0.224	0.000
Linier Model (LM)	LM Loss	Average loss difference	p value
Creative	0.448	0.001	0.753
Task	0.439	0.014	0.113
Technology	0.645	0.007	0.072
Overall	0.512	0.006	0.105

Based on the SRMR calculations shown in Table 5, the Saturated model value of 0.058 indicates a good model as it is below 0.08, as seen in Table 6. (Dash & Paul, 2021) The CVPAT-PLS-SEM indicator average and linear model prediction benchmark results show that IA significantly has a smaller value compared to LM, indicating a strong predictive power of the research model (Liengaard et al., 2021). Overall, the tested research model demonstrates good model quality. Furthermore, the full research model can be observed in Figure 1.

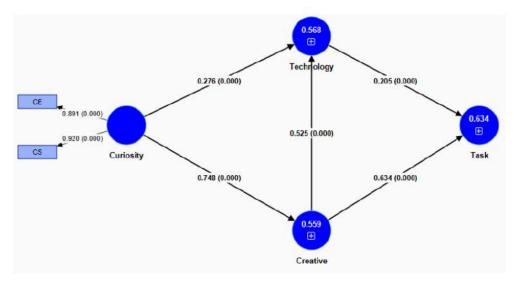


Figure 1. Final Structural model

The significance of Curiosity influencing Readiness to Use Technology and Creativity lies in the innate drive of individuals to seek additional information or specific knowledge about something to achieve particular goals. The meaning behind Curiosity significantly influencing Readiness to Use Technology and Creativity stems from individuals' inherent motivation to seek additional information or specific knowledge about something to achieve particular goals. This drive for exploration and discovery not only enhances one's preparedness to embrace technology but also fuels creativity in problem-solving and innovation within the fashion creative industry in Bandung City.

The implications of Curiosity significantly influencing Readiness to Use Technology and Creativity on task performance are profound. Employee performance, referring to the behaviors or actions individuals undertake to complete their tasks in the workplace, can be greatly enhanced when individuals exhibit a strong sense of curiosity. This curiosity drives individuals to explore new technologies, think innovatively, and approach tasks with a creative mindset. As a result, employees who are curious, prepared to embrace technology, and demonstrate creativity are likely to exhibit higher levels of task performance by approaching challenges with a fresh perspective and finding unique solutions in the fashion creative industry in Bandung City.

The study conducted by Walsh, Knott, and Collins (2022) indicated that curiosity, creativity, and clarity are interconnected and mutually supportive in driving innovation. Furthermore, the research by Gross, Zedelius, and Schooler (2020) revealed a relationship between curiosity and creativity, highlighting how a deeper understanding of curiosity can serve as a foundation for enhancing creativity. Acikgoz, Elwalda, and De Oliveira (2023) emphasized that curiosity plays a key role in motivating individuals to explore and adopt new technologies. Horstmeyer (2020) suggested that developing soft skills is beneficial not only for individuals but also for organizations as a whole. Organizations with employees possessing strong soft skills tend to

be more adaptive to change and capable of facing complex challenges. Employees with high curiosity are also more likely to contribute to innovation and creative solutions.

Lievens, Harrison, Mussel, and Litman (2022) emphasized the importance of understanding curiosity as a key element in organizational development and human resource management. They argued that organizations need to create an environment that supports curiosity, where employees feel safe to share ideas and explore new solutions without fear of negative consequences. Müceldili, Tatar, and Erdi (2020) stated that organizations need to develop strategies to encourage curiosity among employees, such as through training and development programs that emphasize exploration and innovation. Additionally, it is important to understand employees' cognitive styles and create an environment that supports diverse styles so that all employees can make optimal contributions to organizational agility performance.

The profound implications of Curiosity significantly influencing Readiness to Use Technology and Creativity on task performance are multifaceted. Employee performance, which encompasses the behaviors and actions individuals engage in to accomplish their tasks in the workplace, is intricately linked to these factors. When individuals possess a strong sense of curiosity, they are more inclined to explore new technologies, think innovatively, and tackle tasks with a creative approach. This curiosity-driven mindset not only enhances their preparedness to adopt technological advancements but also fuels their creativity in problem-solving and idea generation.

As a result, employees who exhibit curiosity, readiness to embrace technology, and creativity are likely to excel in task performance within the dynamic landscape of the fashion creative industry in Bandung City. By approaching challenges with a sense of wonder and a willingness to explore new possibilities, these individuals can bring fresh perspectives, innovative solutions, and a high level of engagement to their work. Ultimately, the synergy between curiosity, technological readiness, creativity, and task performance can lead to enhanced productivity, efficiency, and success in the workplace.

Conclusions

The significant impact of Curiosity on Readiness to Use Technology and Creativity in the context of task performance highlights the importance of fostering a curious mindset among employees in the fashion creative industry in Bandung City. This can lead to enhanced innovation, problem-solving capabilities, and overall performance in the workplace. Cultivating a culture that nurtures curiosity, embraces technological advancements, and fosters creativity can lead to improved employee performance and organizational outcomes. Moving forward, it is suggested that organizations prioritize initiatives that cultivate and support curiosity, technological readiness, and creativity among their employees. Providing training programs, encouraging exploration of new technologies, and fostering a culture that values creativity can contribute to improved task performance and organizational success. To further enhance workplace effectiveness, organizations should consider implementing tailored training programs, promoting cross-functional collaboration, and providing resources

ETS

to support continuous learning and innovation. Encouraging employees to explore new ideas, experiment with technology, and think outside the box can stimulate creativity and optimize task performance.

However, it is essential to acknowledge the limitations of this study, such as the need for further research to explore the long-term effects of curiosity, technology readiness, and creativity on task performance. Additionally, future studies could investigate the role of other factors, such as organizational support and individual motivation, in shaping employee performance in the fashion creative industry. Future studies could delve into specific industry contexts, explore the influence of leadership styles, or investigate the intersection of individual and organizational factors on performance outcomes. By addressing these limitations and delving deeper into the nuances of Curiosity, Technology Readiness, Creativity, and task performance, researchers can provide valuable insights for practitioners aiming to drive innovation and excellence in the competitive landscape of the fashion creative industry.

Missina "."

Curiosity

ORIGINALITY REPORT

4 SIMIL	% ARITY INDEX	2% INTERNET SOURCES	3% PUBLICATIONS	2% STUDENT PAPERS
PRIMA	RY SOURCES			
1	WWW.NC Internet Sour	bi.nlm.nih.gov		1 %
2		ed to Southern ity - Continuing	•	re 1 %
3	Gautam balance intentio	Kumar Gautam , Rakshya Bhetu , job satisfaction ns among nurse of Organization	uwal. "Work-lif n and turnover es", Internatior	e nal
4	Submitt Student Pape	ed to Asia e Uni	versity	<1%
5	Submitt Student Pape	ed to Chartered	l Institute of H	ousing <1 %
6	Creatior Service	nanda, Happy. "(n: An Empirical S Costumers", Un Indonesia), 2024	Study on Strea iversitas Islam	ming \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Mohammad-Mehdi Ghasemi, Diba Seif, Hojat Pirzadi. "Predicting depression based on dimensions of social-emotional competence among gifted students", Research and Development in Medical Education, 2023

<1%

Publication

Eldaa Prisca Refianti Sutanto, Ferdi Antonio, Roy G.A. Massie. "Patient safety culture as a mediator between healthcare personnel's psychological empowerment and patient outcome", International Journal of Public Health Science (IJPHS), 2024

<1%

Publication

Exclude quotes

Off

Exclude matches

Off

Exclude bibliography Off

Curiosity

PAGE 1

Article Error You may need to remove this article.

PAGE 2

Missing "," You may need to place a comma after this word.

P/V You have used the passive voice in this sentence. Depending upon what you wish to emphasize in the sentence, you may want to revise it using the active voice.

Article Error You may need to remove this article.

Article Error You may need to remove this article.

PAGE 3

Article Error You may need to use an article before this word.

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

Article Error You may need to use an article before this word.

PAGE 4

Article Error You may need to use an article before this word.

Article Error You may need to use an article before this word.

Article Error You may need to use an article before this word.

PAGE 5

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

PAGE 6

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

PAGE 7

Article Error You may need to remove this article.

Article Error You may need to use an article before this word. Consider using the article **the**.

Confused You have used **a** in this sentence. You may need to use **an** instead.

Confused You have used **effect** in this sentence. You may need to use **affect** instead.

PAGE 8

Confused You have used **effect** in this sentence. You may need to use **affect** instead.

Prep. You may be using the wrong preposition.

Article Error You may need to remove this article.

Confused You have used **effect** in this sentence. You may need to use **affect** instead.

Confused You have used **effect** in this sentence. You may need to use **affect** instead.

Confused You have used **effect** in this sentence. You may need to use **affect** instead.

Article Error You may need to use an article before this word.

- Article Error You may need to use an article before this word. Consider using the article the.
- Missing "," You may need to place a comma after this word.
- Missing "," You may need to place a comma after this word.
- **Proofread** This part of the sentence contains a grammatical error or misspelled word that makes your meaning unclear.
- Verb This verb may be incorrect. Proofread the sentence to make sure you have used the correct form of the verb.
- Prep. You may be using the wrong preposition.
- Missing "," You may need to place a comma after this word.
- Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.
- Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.

PAGE 10

- Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.
- Sp. This word is misspelled. Use a dictionary or spellchecker when you proofread your work.
- **Confused** You have used **through** in this sentence. You may need to use **though** instead.
- **Proofread** This part of the sentence contains a grammatical error or misspelled word that makes your meaning unclear.
- Missing "," You may need to place a comma after this word.

PAGE 11

Missing "," You may need to place a comma after this word.