

# **zulfa.eef@gmail.com 1**

## **6\_production\_72\_firmansyah**

-  26S-B2-Informatik 2 DES 060
-  26S-B1-Informatik 2 (Moodle PP)
-  FH Kärnten Gemeinnützige Gesellschaft mbH

---

### **Document Details**

Submission ID

trn:oid:::1:3453196882

9 Pages

Submission Date

Jan 6, 2026, 4:33 AM GMT+1

1,590 Words

Download Date

Jan 6, 2026, 4:36 AM GMT+1

10,281 Characters

File Name

6\_production\_72\_firmansyah.docx

File Size

381.3 KB

# 7% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

## Filtered from the Report

- ▶ Bibliography
- ▶ Quoted Text
- ▶ Cited Text

## Match Groups

-  **9** Not Cited or Quoted 7%  
Matches with neither in-text citation nor quotation marks
-  **0** Missing Quotations 0%  
Matches that are still very similar to source material
-  **0** Missing Citation 0%  
Matches that have quotation marks, but no in-text citation
-  **0** Cited and Quoted 0%  
Matches with in-text citation present, but no quotation marks

## Top Sources

- 5%  Internet sources
- 3%  Publications
- 4%  Submitted works (Student Papers)

## Match Groups

-  **9** Not Cited or Quoted 7%  
Matches with neither in-text citation nor quotation marks
-  **0** Missing Quotations 0%  
Matches that are still very similar to source material
-  **0** Missing Citation 0%  
Matches that have quotation marks, but no in-text citation
-  **0** Cited and Quoted 0%  
Matches with in-text citation present, but no quotation marks

## Top Sources

- 5%  Internet sources
- 3%  Publications
- 4%  Submitted works (Student Papers)

## Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

|                                                                                         |                                                                                                 |     |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----|
|  1     |  Internet      |     |
| jurnal.stmik-mi.ac.id                                                                   |                                                                                                 | 2%  |
|  2     |  Internet      |     |
| journal.lemlit.org                                                                      |                                                                                                 | 1%  |
|  3     |  Internet      |     |
| pdfcoffee.com                                                                           |                                                                                                 | 1%  |
|  4   |  Publication |     |
| "2024 Real-Time Intelligent Systems", Springer Science and Business Media LLC, 2...     |                                                                                                 | <1% |
|  5   |  Publication |     |
| Fadi Al-Turjman. "Artificial Intelligence Learning Facilitators - Creating Smart Edu... |                                                                                                 | <1% |
|  6   |  Internet    |     |
| journal.esrgroups.org                                                                   |                                                                                                 | <1% |
|  7   |  Internet    |     |
| www.iieta.org                                                                           |                                                                                                 | <1% |
|  8   |  Publication |     |
| "Learning Analytics Methods and Tutorials", Springer Science and Business Media...      |                                                                                                 | <1% |

## Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School In Bandung

2  
Robi Firmansyah<sup>1</sup>, Rini Risanti<sup>2</sup>, Oktavia<sup>3</sup>, Miftah Fahmi<sup>4</sup>

STMIK Mardira Indonesia<sup>1,2,3,4</sup>

Email: robifirmansyah314@gmail.com<sup>1</sup>, rini\_risanti@stmik-mi.ac.id<sup>2</sup>, oktavia@stmik-mi.ac.id<sup>3</sup>, miftah@stmik-mi.ac.id<sup>4</sup>

### Abstract

4  
A vocational high school in Bandung is dedicated to cultivating competitive and employable graduates. Nonetheless, the institution faces challenges in conducting comprehensive assessments of pupils' academic data to identify their strengths and weaknesses. Currently, data analysis relies on basic descriptive methodologies, which often fail to yield adequate insights for informed strategic decision-making. Furthermore, there is a lack of interactive visualization tools to enhance the presentation of student grouping data.

7  
This study aims to address these concerns by utilizing the K-Means algorithm to categorize pupils based on their academic performance. This classification yields three clusters that delineate students' attributes in high, medium, and low score categories. The evaluation results indicate that the model comprising three clusters has the highest Silhouette Score of 0.3364. This research generates an interactive website as a visualisation tool to display the outcomes of student grouping correctly.

The implementation of this method is anticipated to enhance the school's management of academic data and deliver tailored learning recommendations that more effectively address the needs of students within each cluster. Therefore, the educational quality of this vocational high school in Bandung can be markedly enhanced.

**Keywords :** K-Means, Clustering, Academic Data, Visualization

### INTRODUCTION

Education is essential for cultivating individual potential and shaping a nation's advancement. Vocational high schools aim to equip students with the necessary skills for their respective industries (Liu, 2022).

A vocational high school in Bandung offers nine programs and is dedicated to producing competitive graduates at both national and international levels. This school lacks an analytical methodology to categorise students by their academic traits, resulting in analyses being

performed solely through basic descriptive approaches.

This constraint hinders the school's ability to acquire comprehensive insights into student characteristic trends. Consequently, an analytical system grounded in data mining, specifically employing clustering techniques, is crucial for enhancing the efficiency and precision of academic data management.

The utilisation of clustering techniques can aid the school in categorising students according to academic similarities, facilitating a more customised learning experience. This method

4  
*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*

---

can enhance data management efficiency and facilitate improved academic decision-making.

### **Data Mining**

Data mining is the technique of identifying patterns in large datasets that facilitate decision-making (Santosa et al., 2021). This strategy facilitates the discernment of trends and correlations within the data using algorithmic analysis. The identified patterns can yield significant insights and facilitate a more precise decision-making process.

### **Clustering**

8  
Clustering is a data mining technique used to categorize data into clusters that exhibit commonalities based on specific attributes (Vankayalapati et al., 2021). This technique aims to identify patterns in the data without necessitating pre-established class designations.

### **K-Means**

K-Means is a non-hierarchical clustering technique that categorises data according to distinctive similarities (Chang et al., 2020). This technique partitions the data into many clusters by minimising intra-cluster variance and maximising inter-cluster differences (Moubayed et al., 2020). This approach is straightforward and efficient in numerous data analysis contexts.

### **Website**

A website comprises a series of interlinked pages that include diverse content, such as documents and photos, hosted on a web server. (Rani et al., 2021; Wati et al., 2021)

### **Python (Flask)**

Python is a programming language engineered for enhanced code readability, primarily through extensive use of indentation (Cahapin et al., 2023). Flask, a Python-based microframework, facilitates the creation of organized and flexible online applications, maintaining a lightweight nature while being adaptable to specific requirements.

### **Object Oriented Analysis Design**

The Object-Oriented Analysis and Design (OOAD) Software Development Model employs the OOAD idea as a system development methodology that prioritizes objects above data or data analysis methods. (Sari, I. P., Al-Khowarizmi, A. K., & Batubara, 2021)

### **Unified Modeling Language (UML)**

The Unified Modelling Language (UML) serves as the standard for visualising, planning, and documenting software systems, applicable to many applications, including corporate and real-time systems (Hamka & Ramdhoni, 2022).

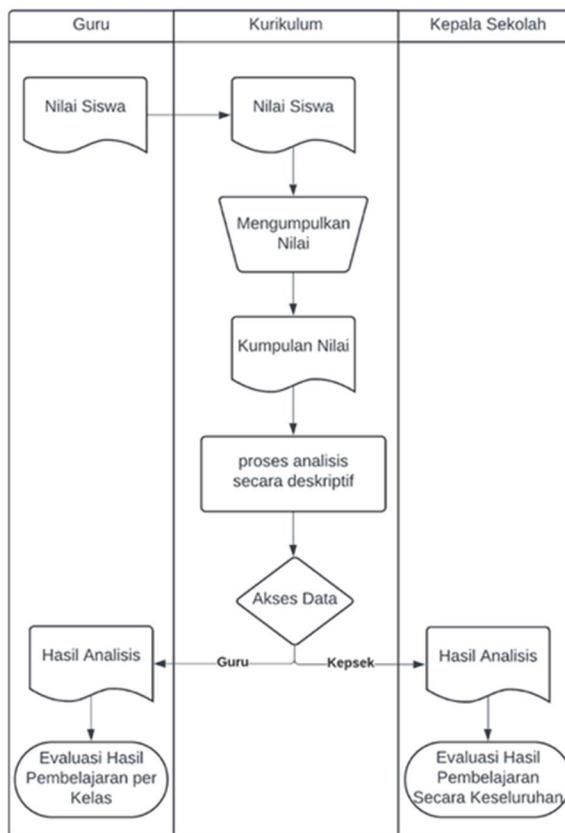
The author aims to develop an interactive website as a visualisation tool to display the outcomes of student clustering effectively. This strategy is anticipated to enable the school to efficiently manage academic data and deliver more customized learning recommendations tailored to the needs of students within each cluster. Consequently, the educational quality of a vocational high school in Bandung might be markedly enhanced.

---

### **METHOD**

*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*

6  
This study utilises a quantitative research approach to examine the academic performance data of students at a vocational high school in Bandung. It emphasises the application of the K-Means clustering technique to classify pupils according to their academic performance. Data will be gathered from students' academic records, encompassing test results, assignments, and attendance. The preprocessing phase will entail data cleansing to eliminate discrepancies and normalisation to guarantee uniform contribution from each characteristic. The K-Means technique will be employed to generate three clusters denoting high, medium, and low academic achievement. The ideal number of clusters will be found by the Silhouette Score, prioritising the attainment of the highest score for efficient classification.


An interactive website will be created to serve as a visualisation tool for student grouping

data. This website will present clustering results via intuitive charts and graphs, enabling instructors to analyse data and derive insights into student performance effortlessly. A preliminary pilot test will be conducted with a selected cohort of educators to gather input, which will subsequently inform the comprehensive deployment of the technology. The implementation's impact will be evaluated through qualitative input from educators and the tracking of changes in student performance over time, with the ultimate goal of enhancing data management and decision-making within the school.

## RESULT AND DISCUSSION

Analysis of Current System Work Procedures  
The operational protocols of the system presently implemented at a vocational high school in Bandung are as follows:

*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*



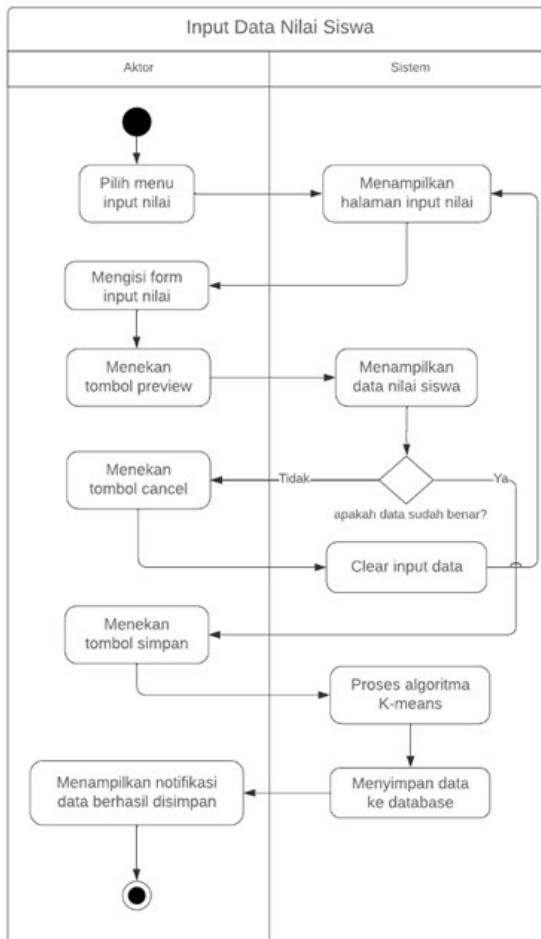
**Figure 1. Analysis of Current System Work Procedures**

The existing protocol for assessing learning outcomes at the school commences with educators entering student grades into the curriculum system. The curriculum aggregates all student grades and conducts a descriptive analysis of the collected data. Following the study, data access is allocated to instructors and the principal based on their requirements. Teachers utilise the analytical results to assess learning outcomes for each class, whereas the

principal conducts a comprehensive evaluation of learning outcomes based on the available data.

#### **System Design**

System design aims to identify the technical elements that form the foundation of the design solution. At this juncture, the design is meticulously delineated to tackle specific technical concerns pertinent to implementation tasks, including Use Case Diagrams, Activity Diagrams, Sequence Diagrams, Class Diagrams, and interface design.


#### **Use Case Diagram**

*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*

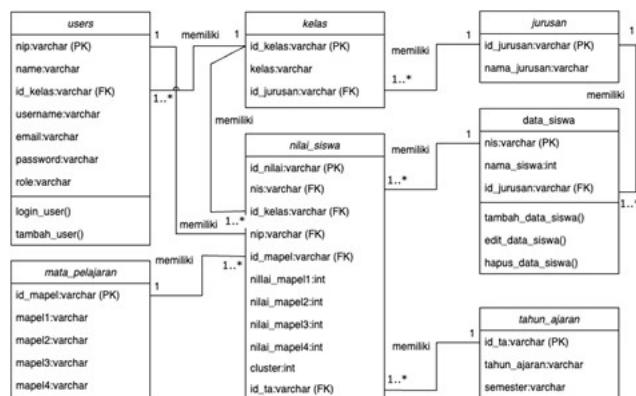


**Figure 2. Use Case Diagram**

### Activity Diagram

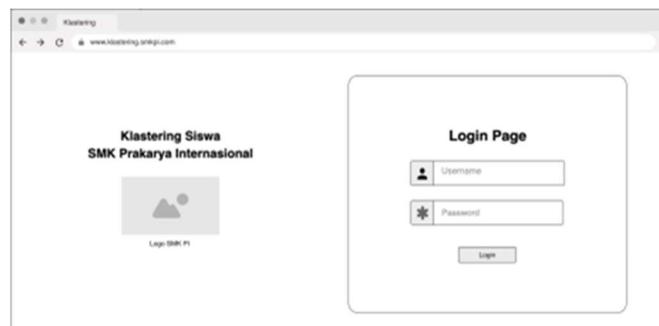


**Figure 3. Activity Diagram**


### Sequence Diagram

*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*




**Figure 4. Sequence Diagram**

### Class Diagram



**Figure 5. Class Diagram**

### Interface Design



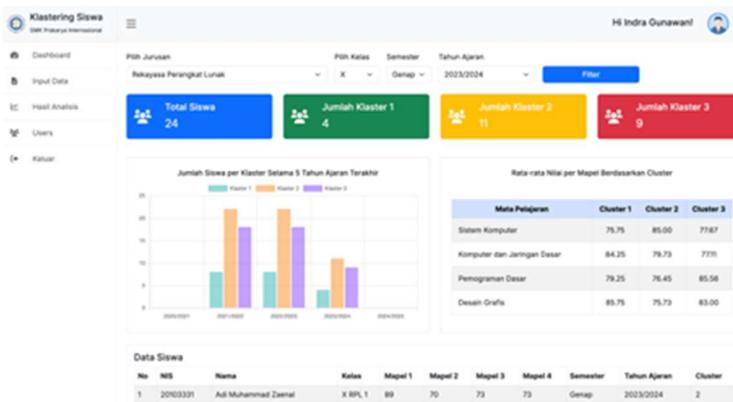
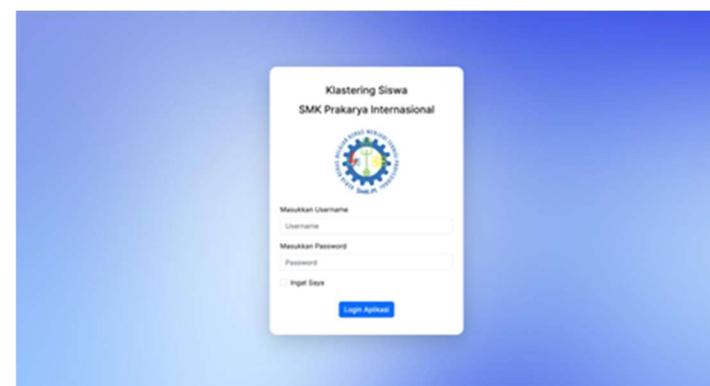
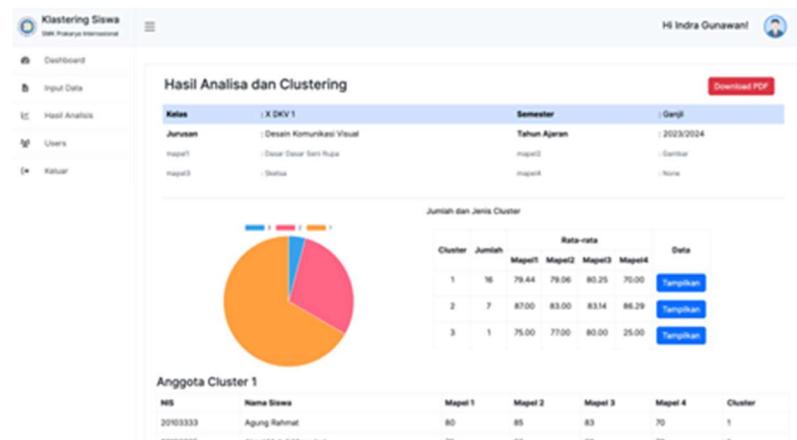


*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*



Figure 6. Interface Design


## System Implementation

Implementation is the process of ensuring the execution and attainment of a programme or policy.



Firmansyah,

Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School In Bandung



## CONCLUSION

The findings of this study will significantly aid the school in assessing and appraising student learning outcomes more efficiently. The use of the designed system streamlines the collection and analysis of grades, allowing teachers to assess learning for each class with enhanced precision. This increased precision enables educators to pinpoint specific areas of student difficulty and to customise their instructional methods accordingly, ultimately resulting in higher student performance.

Moreover, the technology enables the principal to perform a thorough assessment of overall learning outcomes. By utilizing comprehensive data, the principal may evaluate the school's educational quality and make informed judgments to improve teaching methodologies and resource allocation. This comprehensive strategy not only enhances the ongoing advancement of academic standards but also cultivates a learning environment that emphasises student success and involvement.

## REFERENCES

Cahapin, E. L., Malabag, B. A., Santiago Jr., C. S., Reyes, J. L., Legaspi, G. S., & Adrales, K. L. (2023). Clustering of students admission data using k-means, hierarchical, and DBSCAN algorithms. *Bulletin of Electrical Engineering and Informatics*, 12(6), 3647–3656. <https://doi.org/10.11591/eei.v12i6.4849>

Chang, W., Ji, X., Liu, Y., Xiao, Y., Chen, B., Liu, H., & Zhou, S. (2020). Analysis of University Students' Behavior Based on a Fusion K-Means Clustering Algorithm. *Applied Sciences*, 10(18), 6566. <https://doi.org/10.3390/app10186566>

Hamka, M., & Ramdhoni, N. (2022). K-Means cluster optimization for potentiality student grouping using elbow method. 060011. <https://doi.org/10.1063/5.0108926>

Liu, R. (2022). Data Analysis of Educational Evaluation Using K-Means Clustering Method. *Computational Intelligence and*

*Firmansyah,  
Grouping Students Based On Academic Values Using The K-Means Method At A Vocational High School  
In Bandung*

---

Neuroscience, 2022, 1–10.  
<https://doi.org/10.1155/2022/3762431>

Moubayed, A., Injamat, M., Shami, A., & Lutfiyya, H. (2020). Student Engagement Level in an e-Learning Environment: Clustering Using K-means. *American Journal of Distance Education*, 34(2), 137–156.  
<https://doi.org/10.1080/08923647.2020.1696140>

Rani, L. N., Defit, S., & Muhammad, L. J. (2021). Determination of Student Subjects in Higher Education Using Hybrid Data Mining Method with the K-Means Algorithm and FP Growth. *International Journal of Artificial Intelligence Research*, 5(1).  
<https://doi.org/10.29099/ijair.v5i1.223>

Santosa, R. G., Lukito, Y., & Chrismanto, A. R. (2021). Classification and Prediction of Students' GPA Using K-Means Clustering Algorithm to Assist Student Admission Process. *Journal of Information Systems Engineering and Business Intelligence*, 7(1), 1.  
<https://doi.org/10.20473/jisebi.7.1.1-10>

Sari, I. P., Al-Khowarizmi, A. K., & Batubara, I. H. (2021). Cluster Analysis Using K-Means Algorithm and Fuzzy C-Means Clustering For Grouping Students' Abilities In Online Learning Process. *Journal of Computer Science, Information Technology and Telecommunication*

Engineering, 2(1), 139–144.

Vankayalapati, R., Ghutugade, K. B., Vannapuram, R., & Prasanna, B. P. S. (2021). K-Means Algorithm for Clustering of Learners Performance Levels Using Machine Learning Techniques. *Revue d'Intelligence Artificielle*, 35(1), 99–104.  
<https://doi.org/10.18280/ria.350112>

Wati, M., Rahmah, W. H., Novirasari, N., Haviluddin, Budiman, E., & Islamiyah. (2021). Analysis K-Means Clustering to Predicting Student Graduation. *Journal of Physics: Conference Series*, 1844(1), 012028. <https://doi.org/10.1088/1742-6596/1844/1/012028>