Exploring the Impact of Inquisitiveness on Technology Adoption and Creativity on Work Efficiency: Insights from the Fashion Creative Industry in Bandung, Indonesia

Iwan Sidharta¹, Asep Rochyadi Suherman², Octaviane Herawati³, Riska Yuni Astuti⁴, Pebrio Tri Andyandi⁵

Sekolah Tinggi Ilmu Ekonomi Pasundan, Bandung 1,2,3,4,5 i_sidh@stiepas.ac.id¹, asep@stiepas.ac.id², octavianehera06@gmail.com³, riskayuniastuti2@gmail.com⁴, pebriotria@gmail.com⁵

Abstract

Technology plays a vital role in addressing key challenges in the fashion industry, including high personalization, environmental sustainability, and increased productivity. The aim of this study is to explore the impact of technological advancements on innovation in the fashion industry, particularly among SMEs in Indonesia. Additionally, this research will investigate Curiosity, technology readiness, creativity, and employee performance enhancement in the creative fashion industry. This research employs a survey approach in the creative fashion industry sector in Bandung City. Respondents consist of employees with a minimum of 1 year of experience in fashion companies in Bandung City, selected through simple random sampling. Out of 322 respondents, data is tested for the proposed research model. The validity and reliability of the instruments will be tested for the first-order and second-order models. Structural analysis and Structural Equation Modeling are utilized to generate a valid research model prediction.

The findings confirm that Curiosity significantly influences technology readiness and creativity in the Bandung fashion industry. The intrinsic drive to seek additional information stimulates innovation and employee performance. Individuals with a strong sense of curiosity tend to be more prepared to embrace technology, enhance creativity, and demonstrate superior task performance. The profound impact of Curiosity on Technology Readiness and Creativity towards task performance demonstrates a complex aspect of originality. Employee performance, involving behavior and actions in task completion, is closely linked to these factors. Curiosity encourages exploration of new technologies, innovative thinking, and creative approaches to tasks. Employees who exhibit curiosity, technology readiness, and creativity tend to excel in their work, bringing new perspectives, innovative solutions, and high engagement in the Bandung fashion industry. The limitations of this study include the need for further research to explore the long-term effects of Curiosity, technology readiness, and creativity on task performance. Future studies could investigate the role of other factors such as organizational support and individual motivation in shaping employee performance in the creative fashion industry. Subsequent research could deepen the understanding of specific industry contexts, delve further into leadership, or explore the intersection of individual and organizational factors on performance outcomes.

Keywords: Curiosity, Technology Readiness, Creativity, Task Employee Performance

INTRODUCTION

The evolution of technology is on the rise, and its application in daily life is proving to be beneficial for problem-solving (Li, Dai & Cui, 2020; Myovella, Karacuka & Haucap, 2020; Vu, Hanafizadeh & Bohlin, 2020). Harnessing technology can facilitate the development of superior products, enhance the capabilities of existing products, introduce new components, and create knowledge-based products and

services (Srinivasan & Venkatraman, 2018; Giones& Brem, 2017; Song, 2019). The challenge of boosting Indonesia's knowledge-based economic advantage necessitates collaboration from various stakeholders, given the country's suboptimal position in the global economic index (UNDP, 2021; Acs et al., 2021; Dutta, Lanvin, León & Wunsch-Vincent, 2021). The utilization of technology is a critical concern for Indonesia, which boasts a large population

and a demographic dividend as an opportunity. However, the skills of the workforce do not align with global requirements, highlighting the importance of creativity and technological readiness based on data from the World Economic Forum in 2023 (Di Battista et al., 2023; Lim, 2023; Dumitru & Halpern, 2023; Abdul Hamid, 2022). Therefore, it is essential to assess the capabilities of the workforce in the creative fashion industry leverage technological advancements for task completion and improved living standards. The creative fashion industry's contribution to Bandung City's economy in 2022 is estimated at 17% of the GRDP. Challenges in technology utilization have been pinpointed by the Department of Tourism and Culture of Bandung City, necessitating the enhancement of the workforce in the creative fashion industry, including content development, creativity, and suboptimal technology, high software costs for producing creative products and services, insufficient content research, and inadequate content archiving activities. Additionally, human resource development in the creative economy remains suboptimal (Disbudpar, 2023). Readiness in utilizing technology and fostering creativity are crucial for individuals in fulfilling their tasks, influenced by

Sidharta.

individual

performance.

curiosity.

To

technological advancements and individual creative potential, a curiosity for seeking

information needs to be cultivated to enhance

readiness in using technology and creativity

optimally, positively impacting organizational

capitalize

The foundation of prosperity and the creation of knowledge-based economic wealth are driven by the knowledge economy, efficient and effective technology utilization, and innovation (Srinivasan & Venkatraman, 2018; Sussan & Acs, 2017; Nambisan, 2017). The digitalization process has accelerated and reduced operational barriers for organizations, broadening the customer base, securing financial support, fostering rapid growth, and enabling flexible and productive work mechanisms (Giones & Brem, 2017; Song, 2019; Björkdahl, 2020). Companies need to embrace a creative and innovative mindset to generate new ideas, recognize market gaps, identify opportunities, seize them, and create added value (Anderson, Potočnik & Zhou, 2014; Lee et al., 2020; Gouvea, Kapelianis, Montoya & Vora,

2021). Readiness to use technology and creativity, based on curiosity, forms the foundation of intellectual capacity, knowledge, thinking style, problem-solving interest, and supportive environments (Koutstaal, Kedrick & Gonzalez-Brito, 2022; El-Kassar et al., 2022; Acikgoz, Elwalda & De Oliveira, 2023). Creativity serves as the cornerstone of innovation, enabling the exploitation of new opportunities stemming from environmental changes and requiring

collective and creative efforts to trigger the innovation process (AlEssa & Durugbo, 2022; Afsar & Umrani, 2020; Grošelj, Černe, Penger & Grah, 2020). Research findings by Venkatesh, Speier & Morris (2002) and Venkatesh, Speier-Pero, Aljafari& Bala (2022) highlight the Technology Acceptance Model (TAM) as a tool to understand how user perceptions are formed

before implementing a system. The studies also indicate that technology plays a supportive role in communication with consumers. Adebanjo, Laosirihongthong, Samaranayake & The (2021) and Flores, Xu & Lu (2020) reveal that the dimension of human capital readiness is recognized as crucial for implementing Industry 4.0 technologies. Research by Albors-Garrigos (2020), Huynh (2021), and Casciani, Chkanikova & Pal (2022) demonstrates that collaboration with suppliers and startups is essential for success in the creative fashion industry. Effective use of information systems plays a vital role in decision-making, planning, and human resource management in the fashion industry's creative processes.

Sidharta.

Recent research by Dissanayake Weerasinghe (2021), Hoque, Rasiah, Furuoka & Kumar (2021), Park-Poaps, Bari & Sarker (2021), Castañeda-Navarrete, Hauge & López-Gómez (2021), and Jin & Shin (2021) indicates that in the era of the 4.0 industrial revolution, technology can address key challenges in the fashion industry, such as hyper-personalization, environmental sustainability, and increased productivity. This suggests that technology adoption is a crucial factor in the fashion industry, including areas like 3D design and modeling, digital technology, e-commerce, and platforms (Sun & Zhao, McQuillan, 2020; Huynh, 2021). Findings from studies by Acikgoz, Elwalda & De Oliveira (2023),Wijewardhana, Weerabahu, Nanayakkara & Samaranayake (2021), and Watat & Bonaretti (2022) suggest that curiosity is an indicator that can enhance technology adoption readiness. Similarly, research by

Koutstaal, Kedrick & Gonzalez-Brito (2022), Gross, Zedelius & Schooler (2020), and Manik et al. (2023) indicates that curiosity can influence individual creativity within an organization.

Research by Zhang, Shi & Gale (2021), Ahmad, Miskon, Alabdan & Tlili (2020), and Sehnem et al. (2024) also suggests that technological advancements create situations and opportunities for innovation in various aspects of the fashion industry. However, many SMEs in Indonesia are not adequately prepared in terms of competent IT personnel and face limitations such as inadequate network infrastructure and internet connectivity (Priambodo, Sasmoko, Abdinagoro & Bandur, 2021). Additionally, communication instability network and limited telecommunications infrastructure pose challenges (Sun, Wang & Jeyaraj, 2020; Tønnessen, Dhir & Flåten, 2021; Wang & Hu, 2020). Previous research indicates a gap in studying the influence of curiosity on technology readiness, creativity, and its implications for enhancing employee performance in the creative fashion industry.

METHOD

This research employed a survey approach conducted in the creative fashion industry sector in the city of Bandung. The respondents sampled were employees who had been working for at least 1 year in fashion companies in Bandung using simple random sampling technique. From the survey results, 322 respondents, who are employees in the creative fashion industry in Bandung, were used as the data for testing the proposed research model.

The research model development consists of four variables: Curiosity, which is an individual's drive to seek additional information or specific interest in something to achieve specific goals, referencing instruments from Kashdan et al. (2009), Próchniak & Ossowski (2023), and Yow, Ramsay, Lin & Marsh (2022). Technological readiness refers to employees' tendency to adopt and use new technologies to achieve goals in their work environment, referencing instruments Parasuraman & Grewal (2000),Parasuraman & Colby (2015), and Blut & Wang (2020). Technological readiness measurement assesses innovation, optimism, insecurity, and discomfort. On the other hand, Creativity is the ability to generate valuable new ideas, closely related to innovation, involving integrating future vision with past experiences and knowledge. Individuals use logical and intuitive abilities in their brains to be creative and generate new ideas, referencing De Jong & Den Hartog (2010), Janssen (2000), and Sidharta et al. (2023).

Sidharta.

Creativity requires a focused mindset and enthusiasm to embrace uncertainty, referencing AlEssa & Durugbo (2022), Afsar & Umrani (2020), and Amabile (1988). Creativity measurement assesses idea generation, idea promotion, and idea implementation. Employee performance refers to the behaviors or actions individuals take to complete their tasks in the workplace, referencing Aguinis, Gottfredson & Joo (2012), Casu et al. (2021), Na-Nan, Chaiprasit & Pukkeeree (2018), and Koopmans et al. (2014).

The researcher tested the validity and reliability of the research instruments for both first- order and second-order models to ensure the authenticity of the research instruments to be used. After conducting validity and reliability tests, the researcher will proceed with further testing using structural analysis to generate research model predictions. Data analysis will be conducted using Structural Equation Modeling approach to produce valid research, as one of the innovations in research in the creative fashion industry sector. Model fit testing will use the approach recommended by Hair et al. (2022) and Becker, Cheah, Ringle & Sarstedt (2023), namely the Bias-corrected and accelerated (BCa) bootstrap distribution with 10,000 resampled data.

RESULTS AND DISCUSSION

The comprehensive overview of respondent characteristics from the survey results includes information on gender, age, education level, type of business, business scale, and years of work experience. By analyzing this data, a better understanding of the profile of respondents involved in the survey is expected to be obtained.

The number of female respondents is higher than male respondents, with females making up 55% of the total. The majority of respondents fall within the 30-year age range, accounting for 60% of the participants. This indicates that this age group is the most actively engaged in the survey. On the other hand, respondents aged 41 and above are relatively fewer, comprising only 16% of the total. Respondents predominantly hold a high school education, with 67% having completed this level. This suggests that

secondary education is the most common educational background among the respondents. In contrast, those with junior high school education are very few, at only 3%, while respondents with a diploma or bachelor's degree make up 30%.

The fashion sector is the most represented among respondents, with 44% involved in this industry. This indicates a significant interest in the fashion sector among the respondents. The knitting and footwear sectors also make a notable contribution, although in smaller numbers

compared to the fashion sector. The majority of respondents work in medium-sized businesses, accounting for 49%. Small businesses follow with 29%, and micro-enterprises are the least represented at 22%. This suggests that respondents are more engaged in businesses of a moderate scale. Most respondents have 3 years of work experience, making up 53% of the total. This indicates that many respondents are relatively new to the workforce, while those with over 8 years of work experience account for 21%.

Table 1. First Order validity and reliability test

	CE	CS	Composite reliability	AVE	нтмт	VIF
			(rho_a)			
CE1	0.616		0.775	0.508	0.721	1.551
CE2	0.724					1.321
CE3	0.731					1.636
CE4	0.775					1.712
CE5	0.710					1.370
CS1		0.779	0.883	0.679		1.934
CS2		0.850				2.493
CS3		0.847				2.414
CS4		0.824				2.267
CS5		0.818				2.165

The results of the First Order validity and reliability test, as shown in Table 1, indicate loading factors ranging from 0.616 to 0.850, which signify good values. The calculated composite reliability values of 0.775 and 0.883 also demonstrate strong reliability. Additionally,

the AVE values of 0.508 and 0.679 suggest good factor variation. The discriminant validity score of 0.721 is below 0.9, and the VIF values ranging from 1.321 to 2.493 are less than 5. These criteria, based on Hair (2021) and Chin (1998), point to good validity and reliability in the study.

Table 2. Second Order Loading Factor

	Curiosity	Creative	Technology	Task	Composite reliability (rho_a)	AVE	VIF
CE	0.891				0.794	0.820	1.699
CS	0.920						1.699
Cre1		0.766			0.958	0.659	3.231
Cre2		0.829					4.284
Cre3		0.834					3.232
Cre4		0.827					3.260
Cre5		0.834					3.265
Cre6		0.673					1.849
Cre7		0.748					2.109
Cre8		0.833					3.295
Cre9		0.863					3.860
Cre10		0.806					2.964
Cre11		0.816					3.007
Cre12		0.861					3.819
Cre13		0.844					3.316
Tech1			0.776		0.904	0.543	3.639
Tech2			0.800				3.874
Tech3			0.837				2.937
Tech4			0.830				2.731
Tech5			0.748				1.882
Tech6			0.652				1.942
Tech7			0.675				1.916
Tech8			0.735				1.864
Tech9			0.522				1.323
Tp1				0.861	0.908	0.720	2.595
Tp2				0.863			2.574
Tp3				0.862			2.603
Tp4				0.884			2.955
Tp5				0.766			1.883

The outcomes of the Second Order validity and reliability test, as illustrated in Table 2, reveal loading factors ranging from 0.522 to 0.920, indicating strong values. The calculated composite reliability values of 0.794 to 0.958 demonstrate good reliability, while the AVE

values of 0.543 to 0.820 suggest satisfactory factor variation. The discriminant validity HTMT values shown in Table 3 range from 0.725

to 0.861, which are below 0.9. The VIF values between 1.323 and 4.284, with most being less than 4, indicate good model fit. Only one indicator, item Cre1, has a VIF value exceeding 4 at 4.284. These indications, following the criteria outlined by Hair, Risher, Sartstedt & Ringle (2019), point to strong validity and reliability in the study.

Table 3. Discriminant Validity Heterotrait-Heteromethod Ratio (HTMT)

Heterotrait-Heteromethod Ratio (HTMT)						
	Creative Curiosity Technology Technology					
Creative						
Curiosity	0.861					
Task	0.839	0.802				
Technology	0.785	0.759	0.725			

The results of the structural model testing, as presented in Table 4, indicate that the research

hypotheses have been proven to be statistically significant.

Table 4. Path Coefficients, f-square, R-square, Q2predict, RMSE, MAE and Hypotheses testing

Path	Coefficients	f-square	Standard deviation	P values	Decision
Creative -> Task	0.634	0.511	0.060	0.000	Significant
Creative -> Technology	0.525	0.281	0.065	0.000	Significant
Curiosity -> Creative	0.748	1.269	0.032	0.000	Significant
Curiosity -> Technology	0.276	0.078	0.075	0.000	Significant
Technology -> Task	0.205	0.053	0.057	0.000	Significant
	R-square	Q ² predict	PLS_RMSE = LM_RMSE	PLS_MAE = LM_MAE	Predictive Relevance
Creative	0.559	0.556	0.669; 0.672	0.514; 0.517	Large
Technology	0.568	0.440	0.756; 0.761	0.569; 0.580	Large
Task	0.634	0.458	0.662; 0.672	0.495; 0.511	Large

In Table 4, the Construct creativity (R-square = 0.559; Q²predict = 0.556), technology (R-square

= 0.568; Q²predict = 0.440), and task performance (R-square = 0.634; Q²predict = 0.458) values show Predictive Relevance classified as "large" due to R-square and

Q²predict values exceeding 0.50. Specifically, construct technology and task performance have Q²predict values greater than 0.25, indicating a "medium" level. (Hair Jr, Howard & Nitzl, 2020) Additionally, Path coefficient calculations reveal that Creativity on Task with a Path Coefficient of 0.634 indicates a strong positive influence of Creative variable on Task. The f-square value of 0.511 suggests high relevance predictive effect size. Curiosity on Creative with a Path Coefficient of 0.748 shows a very strong positive impact of Curiosity on Creative. The high fsquare value of 1.269 indicates high relevance predictive effect size. Moreover, Creativity on Technology with a Path Coefficient of 0.525 indicates a significant positive relationship between creativity and technology. The f-square value of 0.281 signifies a medium relevance predictive effect size.

On the other hand, Curiosity on Technology with a Path Coefficient of 0.276 demonstrates a weak relationship between curiosity and technology. The F-Square of 0.078 suggests a small relevance predictive effect size. Furthermore, Technology on Task with a Path Coefficient of

0.205 reveals a weak connection between technology and tasks. The F-Square of 0.053 indicates a small relevance predictive effect size. The analysis results highlight that the relationships between Creative and Task, as well as between Curiosity and Creative, exhibit high predictive relevance. In contrast, the connections between Creative and Technology, Curiosity and Technology, and Technology and Task show lower levels of predictive relevance.

Table 5. SRMR and CVPAT-PLS Predict Result

SRMR			
	Original sample (O)	95%	99%
Saturated model	0.058	0.043	0.046
Estimated model	0.059	0.043	0.046
CVPAT-PLS-SEM			
Indicator Average (IA)	IA loss	Average loss difference	p value
Creative	0.703	-0.254	0.000
Task	0.674	-0.221	0.000
Technology	0.834	-0.182	0.000
Overall	0.741	-0.224	0.000
Linier Model (LM)	LM Loss	Average loss difference	p value
Creative	0.448	0.001	0.753
Task	0.439	0.014	0.113

Technology	0.645	0.007	0.072
Overall	0.512	0.006	0.105

Based on the SRMR calculations shown in Table 5, the Saturated model value of 0.058 indicates a good model as it is below 0.08, as seen in Table 6. (Dash & Paul, 2021) The CVPAT-PLS-SEM indicator average and linear model prediction benchmark results show that IA

significantly has a smaller value compared to LM, indicating a strong predictive power of the research model (Liengaard et al., 2021). Overall, the tested research model demonstrates good model quality. Furthermore, the full research model can be observed in Figure 1.

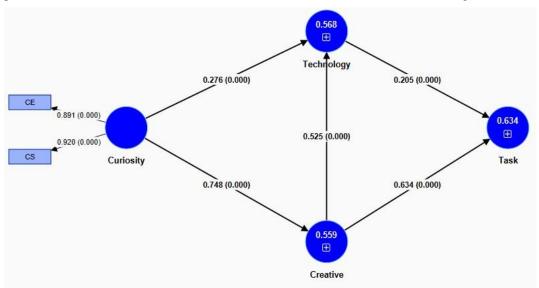


Figure 1. Final Structural mode

The significance of Curiosity influencing Readiness to Use Technology and Creativity lies in the innate drive of individuals to seek additional information or specific knowledge about something to achieve particular goals. The behind meaning Curiosity significantly influencing Readiness to Use Technology and Creativity stems from individuals' inherent motivation to seek additional information or specific knowledge about something to achieve particular goals. This drive for exploration and discovery not only enhances one's preparedness to embrace technology but also fuels creativity in problem-solving and innovation within the fashion creative industry in Bandung City.

The implications of Curiosity significantly influencing Readiness to Use Technology and Creativity on task performance are profound. Employee performance, referring to the behaviors or actions individuals undertake to complete their tasks in the workplace, can be greatly enhanced when individuals exhibit a strong sense of curiosity. This curiosity drives individuals to explore new technologies, think innovatively, and approach tasks with a creative mindset. As a result, employees who are curious,

prepared to embrace technology, and demonstrate creativity are likely to exhibit higher levels of task performance by approaching challenges with a fresh perspective and finding unique solutions in the fashion creative industry in Bandung City.

Sidharta.

The study conducted by Walsh, Knott, and Collins (2022) indicated that curiosity, creativity, and clarity are interconnected and mutually supportive in driving innovation. Furthermore, the research by Gross, Zedelius, and Schooler (2020) revealed a relationship between curiosity and creativity, highlighting how a deeper understanding of curiosity can serve as a foundation for enhancing creativity. Acikgoz, Elwalda, and De Oliveira (2023) emphasized that curiosity plays a key role in motivating individuals to explore and adopt new technologies. Horstmeyer (2020) suggested that developing soft skills is beneficial not only for individuals but also for organizations as a whole. Organizations with employees possessing strong soft skills tend to be more adaptive to change and capable facing complex challenges. Employees with high curiosity are also more likely to contribute to innovation and creative solutions.

Lievens, Harrison, Mussel, and Litman (2022) emphasized the importance of understanding curiosity as a key element in organizational development and human resource management. They argued that organizations need to create an environment that supports curiosity, where employees feel safe to share ideas and explore new solutions without fear of negative consequences. Müceldili, Tatar, and Erdil (2020) stated that organizations need to

develop strategies to encourage curiosity among employees, such as through training and development programs that emphasize exploration and innovation. Additionally, it is important to understand employees' cognitive styles and create an environment that supports diverse styles so that all employees can make optimal contributions to organizational agility performance.

The profound implications of Curiosity significantly influencing Readiness to Use Technology and Creativity on task performance are multifaceted. Employee performance, which and actions encompasses the behaviors individuals engage in to accomplish their tasks in the workplace, is intricately linked to these factors. When individuals possess a strong sense of curiosity, they are more inclined to explore new technologies, think innovatively, and tackle tasks with a creative approach. This curiositydriven mindset not only enhances their preparedness to adopt technological advancements but also fuels their creativity in problem- solving and idea generation.

As a result, employees who exhibit curiosity, readiness to embrace technology, and creativity are likely to excel in task performance within the dynamic landscape of the fashion creative industry in Bandung City. By approaching challenges with a sense of wonder and a willingness to explore new possibilities, these individuals can bring fresh perspectives, innovative solutions, and a high level of engagement to their work. Ultimately, the synergy between curiosity, technological readiness, creativity, and task performance can

lead to enhanced productivity, efficiency, and success in the workplace.

CONCLUSION

The significant impact of Curiosity on Readiness to Use Technology and Creativity in the context of task performance highlights the importance of fostering a curious mindset among employees in the fashion creative industry in Bandung City. This can lead to enhanced innovation, problemsolving capabilities, and overall performance in the workplace.

Cultivating a culture that nurtures curiosity, embraces technological advancements, and fosters creativity can lead to improved employee performance and organizational outcomes. forward, it is suggested organizations prioritize initiatives that cultivate and support curiosity, technological readiness, and creativity among their employees. Providing training programs, encouraging exploration of new technologies, and fostering a culture that values creativity can contribute to improved task performance and organizational success. To workplace enhance effectiveness, organizations should consider implementing tailored training programs, promoting crossfunctional collaboration, and providing resources to support continuous learning and innovation. Encouraging employees to explore new ideas, experiment with technology, and think outside the box can stimulate creativity and optimize task performance.

However, it is essential to acknowledge the limitations of this study, such as the need for further research to explore the long-term effects of curiosity, technology readiness, and creativity on task performance. Additionally, future studies could investigate the role of other factors, such as organizational support and individual motivation, in shaping employee performance in the fashion creative industry. Future studies could delve into specific industry contexts, explore the influence of leadership styles, or investigate the intersection of individual and organizational factors on performance outcomes. By addressing these limitations and delving deeper into the nuances of Curiosity, Technology Readiness, Creativity, and task performance, researchers can provide valuable insights for practitioners aiming to drive innovation and excellence in the competitive landscape of the fashion creative industry.

ACKNOWLEDGMENTS

This research was funded by KEMDIKBUDRISTEK, grant number: 106/E5/PG.02.00.PL/2024.

REFERENCES

Abdul Hamid, R. (2022). The role of employees' technology readiness, job meaningfulness and proactive personality in adaptive performance. Sustainability, 14(23), 15696.

https://doi.org/10.3390/su142315696

Acikgoz, F., Elwalda, A., & De Oliveira, M. J.

(2023). Curiosity on cutting-edge
technology via theory of planned
behavior and diffusion of innovation
theory. International Journal of
Information Management
Data Insights, 3(1), 100152.

- https://doi.org/10.1016/j.jjimei.2022.10 0152
- Acs, Z. J., Szerb, L., Song, A., Komlosi, E., & Lafuente, E. (2021). The digital platform economy index 2020.

 Available at the Global Entrepreneurship and Development Institute (www. thegedi. org).
- Adebanjo, D., Laosirihongthong, T., Samaranayake, P., & Teh, P. L. (2021). enablers of industry Key development at firm level: Findings from an emerging economy. IEEE Transactions on Engineering Management, 70(2), 400-416. https://doi.org/10.1108/IJPPM02-2020-0058
- Afsar, B., & Umrani, W. A. (2020).

 Transformational leadership and innovative work behavior: The role of motivation to learn, task complexity and innovation climate. European Journal of Innovation Management, 23(3), 402-428.
- Aguinis, H., Gottfredson, R. K., & Joo, H. (2012). Using performance management to win the talent war. Business Horizons, 55(6), 609-616. https://doi.org/10.1016/j.bushor.2012.0 5.007
- Ahmad, S., Miskon, S., Alabdan, R., & Tlili, I. (2020). Towards sustainable textile and apparel industry: Exploring the role of business intelligence systems in the era of industry 4.0. Sustainability, 12(7),

- 2632.
- https://doi.org/10.3390/su12072632
- Albors-Garrigos, J. (2020). Barriers and enablers for innovation in the retail sector: Coinnovating with the customer. A case study in grocery retailing. Journal of Retailing and Consumer Services, 55, 102077.
- AlEssa, H. S., & Durugbo, C. M. (2022).

 Systematic review of innovative work behavior concepts and contributions.

 Management Review Quarterly, 72(4), 1171-1208.
- Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in organizational behavior, 10(1), 123-167.
- Anderson, N., Potočnik, K., & Zhou, J. (2014).

 Innovation and creativity in organizations: A state-of-the-science review, prospective commentary, and guiding framework. Journal of management, 40(5), 1297-1333.
- Becker, J. M., Cheah, J. H., Gholamzade, R.,
 Ringle, C. M., & Sarstedt, M. (2023).

 PLS-SEM's most wanted guidance.
 International Journal of
 Contemporary Hospitality
 Management, 35(1), 321-346.
 https://doi.org/10.1108/IJCHM-042022-0474
- Blut, M., & Wang, C. (2020). Technology readiness: a meta-analysis of conceptualizations of the construct and its impact on technology usage.

 Journal of the Academy of Marketing Science, 48, 649-669.

- https://doi.org/10.1007/s11747-019-00680-8
- Björkdahl, J. (2020). Strategies for digitalization in manufacturing firms. California management review, 62(4), 17-36.
- Casciani, D., Chkanikova, O., & Pal, R. (2022).

 Exploring the nature of digital transformation in the fashion industry: opportunities for supply chains, business models, and sustainability-oriented innovations. Sustainability: Science, Practice and Policy, 18(1), 773-795.
- Castañeda-Navarrete, J., Hauge, J., & López-Gómez, C. (2021). COVID-19's impacts on global value chains, as seen in the apparel industry. Development Policy Review, 39(6), 953-970. https://doi.org/10.1111/dpr.12539
- Casu, G., Mariani, M. G., Chiesa, R., Guglielmi, D., & Gremigni, P. (2021). The role of organizational citizenship behavior and gender between job satisfaction and task performance. International journal of environmental research and public health, 18(18), 9499. https://doi.org/10.3390/ijerph18189499
- Chin, W. W. (1998). Commentary: Issues and opinion on structural equation modeling. MIS quarterly, vii-xvi.
- Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting.

 Technological Forecasting and Social Change, 173, 121092.

- https://doi.org/10.1016/j.techfore.2021. 121092
- De Jong, J., & Den Hartog, D. (2010). Measuring innovative work behaviour. Creativity and innovation management, 19(1), 23-36. https://doi.org/10.1111/j.14678691.201

0.00547.x

- Di Battista A, Grayling S, Hasselaar E, Leopold T, Li R, Rayner M, Zahidi S. (2023). Future of jobs report 2023. InWorld Economic Forum, Geneva, Switzerland. https://www.weforum.org/reports/the-future-of-jobs-report-2023.
- Disbudpar Kota Bandung. (2023). Perubahan Rencana Strategis Dinas Kebudayaan danPariwisata Kota Bandung Tahun 2018-1023.
- Dissanayake, D. G. K., & Weerasinghe, D. (2021). Towards circular economy in fashion: Review of strategies, barriers and enablers. Circular Economy and Sustainability, 1-21. https://doi.org/10.1007/s43615-021-00090-5
- Dumitru, D., & Halpern, D. F. (2023). Critical Thinking: Creating Job-Proof Skills for the Future of Work. Journal of Intelligence, 11(10), 194.
- Dutta, S., Lanvin, B., León, L. R., & Wunsch-Vincent, S. (Eds.). (2021). Global innovation index 2021: tracking innovation through the covid-19 crisis. WIPO.
- El-Kassar, A. N., Dagher, G. K., Lythreatis, S., & Azakir, M. (2022). Antecedents and consequences of knowledge hiding: The

roles of HR practices, organizational support for creativity, creativity, innovative work behavior, and task performance. Journal of Business Research, 140, 1-10.

Sidharta.

- Flores, E., Xu, X., & Lu, Y. (2020). Human
 Capital 4.0: a workforce competence
 typology for Industry 4.0. Journal of
 Manufacturing Technology
 Management, 31(4), 687-703.
- Giones, F., & Brem, A. (2017). Digital technology entrepreneurship: A definition and research agenda.

 Technology innovation management review, 7(5), 44-51.
- Gross, M. E., Zedelius, C. M., & Schooler, J. W. (2020). Cultivating an understanding of curiosity as a seed for creativity.

 Current Opinion in Behavioral Sciences, 35, 77-82.

 https://doi.org/10.1016/j.cobeha.2020.0 7.015
- Grošelj, M., Černe, M., Penger, S., & Grah, B. (2020). Authentic and transformational leadership and innovative work behaviour: the moderating role of psychological empowerment. European Journal of Innovation Management, 24(3), 677-706.
- Gouvea, R., Kapelianis, D., Montoya, M. J. R., & Vora, G. (2021). The creative economy, innovation and entrepreneurship: an empirical examination. Creative industries journal, 14(1), 23-62.
- Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle,
 C. M. (2019). When to use and how to
 report the results of PLS-

- SEM. European business review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
- Hair Jr, J. F., Hult, G. T. M., Ringle, C. M.,
 Sarstedt, M., Danks, N. P., & Ray, S.
 (2021). Partial least squares structural equation modeling (PLS-SEM) using R:
 A workbook (p. 197). Springer Nature.
- Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2022), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Sage, Thousand Oaks, CA.
- Horstmeyer, A. (2020). The generative role of curiosity in soft skills development for contemporary VUCA environments. Journal of Organizational Change Management, 33(5), 737-751. https://doi.org/10.1108/JOCM-08-2019-0250
- Hoque, M. A., Rasiah, R., Furuoka, F., & Kumar, S. (2021). Technology adoption in the apparel industry: insight from literature review and research directions.

 Research Journal of Textile and Apparel, 25(3), 292-307. https://doi.org/10.1108/RJTA-08-2020-0090
- Huynh, P. H. (2021). Enabling circular business models in the fashion industry: The role of digital innovation. International Journal of Productivity and Performance Management, 71(3), 870-895. https://doi.org/10.1108/IJPPM-12-2020-0683

- Janssen, O. (2000). Job demands, perceptions of effort-reward fairness and innovative work behaviour. Journal of Occupational and organizational psychology, 73(3), 287-302. https://doi.org/10.1348/096317900167 038
- Jin, B. E., & Shin, D. C. (2021). The power of 4th industrial revolution in the fashion industry: what, why, and how has the industry changed?. Fashion and Textiles, 8(1), 31. https://doi.org/10.1186/s40691-021-00259-4
- Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of research 987-998. personality, 43(6), https://doi.org/10.1016/j.jrp.2009.04.01 1
- Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., Van Buuren, S., Van der Beek, A. J., & De Vet, H. C. (2014). Improving the individual work performance questionnaire using rasch analysis. Journal of applied measurement, 15(2), 160-175.
- Koutstaal, W., Kedrick, K., & Gonzalez-Brito, J. (2022). Capturing, clarifying, and consolidating the curiosity-creativity connection. Scientific reports, 12(1), 15300.
- Kör, B., Wakkee, I., & van der Sijde, P. (2021). How to promote managers' innovative

- Individual behavior at work: perceptions. factors and 102127. Technovation, 99, https://doi.org/10.1016/j.technovation.2 020.102127
- Lee, A., Legood, A., Hughes, D., Tian, A. W., Newman, A., & Knight, C. (2020). Leadership, creativity and innovation: meta-analytic review. European Journal of Work and Organizational Psychology, 29(1), 1-35.
- Li, Y., Dai, J., & Cui, L. (2020). The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model. International Journal of Production Economics, 229, 107777.
- Liengaard, B. D., Sharma, P. N., Hult, G. T. M., Jensen, M. B., Sarstedt, M., Hair, J. F., & Ringle, C. M. (2021). Prediction: coveted, yet forsaken? Introducing a cross-validated predictive ability test in partial least squares path modeling. Decision Sciences, 52(2),362-392. https://doi.org/10.1111/deci.12445
- Lievens, F., Harrison, S. H., Mussel, P., & Litman, J. A. (2022). Killing the cat? A review of curiosity at work. Academy of Management 179-216. Annals, 16(1), https://doi.org/10.5465/annals.2020.02 03
- Lim, W. M. (2023). The workforce revolution: Reimagining work, workers, workplaces for the future. Global **Business** Organizational and Excellence, 42(4), 5-10.

- Manik, E., Sidharta, I., Zulfikar, V. A., Rahman, R. S., Fitria, B. T., Resawati, R., & Nurdiansyah, H. (2023). Creativity: The impact of psychological capital and curiosity from the employee's perspective in Bandung, Indonesia. International Journal of Management and Sustainability, 12(2), 204-213.
- McQuillan, H. (2020). Digital 3D design as a tool for augmenting zero-waste fashion design practice. International Journal of Fashion Design, Technology and Education, 13(1), 89-100. https://doi.org/10.1080/17543266.2020 .1737248
- Myovella, G., Karacuka, M., & Haucap, J.

 (2020). Digitalization and economic
 growth: A comparative analysis
 of Sub-Saharan Africa and
 OECD economies.
 Telecommunications Policy, 44(2),
 101856.
- Müceldili, B., Tatar, B., & Erdil, O. (2020). Can curious employees be more agile? The role of cognitive style and creative process engagement in agility performance. Global Business and Organizational Excellence, 39(6), 39-52. https://doi.org/10.1002/joe.22056
- Na-Nan, K., Chaiprasit, K., & Pukkeeree, P.

 (2018). Factor analysis-validated comprehensive employee job performance scale. International Journal of Quality & Reliability Management, 35(10), 2436-2449.

- https://doi.org/10.1108/IJQRM-06-2017-0117
- Nambisan, S. (2017). Digital entrepreneurship:

 Toward a digital technology perspective of entrepreneurship. Entrepreneurship theory and practice, 41(6), 1029-1055.
 - https://doi.org/10.1111/etap.12254
- Parasuraman, A., & Grewal, D. (2000). The impact of technology on the quality-value-loyalty chain: a research agenda.

 Journal of the academy of marketing science, 28(1), 168-174. https://doi.org/10.1177/009207030028 1015
- Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0.

 Journal of service research, 18(1), 59-74. https://doi.org/10.1177/109467051453 9730
- Park-Poaps, H., Bari, M. S., & Sarker, Z. W. (2021).Bangladeshi clothing manufacturers' technology adoption in the global free trade environment. Journal of Fashion Marketing and Management: An International Journal, 25(2), 354-370. https://doi.org/10.1108/JFMM-06-2020-0119
- Priambodo, I. T., Sasmoko, S., Abdinagoro, S.
 B., & Bandur, A. (2021). E-Commerce
 readiness of creative industry during the
 COVID-19 pandemic in Indonesia. The
 Journal of Asian Finance,
 Economics and

- Business, 8(3), 865-873. https://doi.org/10.13106/JAFEB.2021. VOL8.NO3.0865
- Próchniak, P., & Ossowski, A. (2023). Development and Validation of the Curiosity of Climate Changes Scale. Psychology Research and Behavior 16, 4829-4838. Management, https://doi.org/10.2147/PRBM.S42586
- Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In Handbook of market research (pp. 587-632). Cham: Springer International Publishing.
- Sehnem, S., Troiani, L., Lara, A. C., Guerreiro Crizel, M., Carvalho, L., & Rodrigues, V. P. (2024). Sustainable fashion: challenges barriers for and advancing the circular economy. Environment, Development and Sustainability, 26(2), 4097-4118. https://doi.org/10.1007/s10668-022-02872-9
- Sidharta, I., Suherman, A. R., Najwa, H., Pramashela, M., & Astuti, R. Y. (2023). The Influence of Readiness to Use Technology and Creativity on Task Performance: Perspectives from the Fashion Creative Industry in Bandung City. Jurnal Computech & Bisnis (e-Journal), 17(2),84-96. https://doi.org/10.56447/jcb.v17i2.226
- A. K. (2019). The Digital Song, Entrepreneurial Ecosystem—acritique and reconfiguration. Small Business Economics, 53(3), 569-590.

- https://doi.org/10.1007/s11187-019-00232y
- Srinivasan, A., & Venkatraman, N. (2018). Entrepreneurship in digital platforms: A networkcentric view. Strategic Entrepreneurship Journal, 12(1), 54-71.
- Sun, L., & Zhao, L. (2017). Envisioning the era of 3D printing: a conceptual model for the fashion industry. Fashion and Textiles, 1-16. https://doi.org/10.1186/s40691-017-0110-4
- Sun, Y., Wang, C., & Jeyaraj, A. (2020). Enterprise social media affordances as enablers of knowledge transfer and creative performance: An empirical study. Telematics and Informatics, 51, 101402. https://doi.org/10.1016/j.tele.2020.101 402
- Sussan, F., & Acs, Z. J. (2017). The digital entrepreneurial ecosystem. Small **Business**
- Economics, 49, 55-73. https://doi.org/10.1007/s11187-017-9867-5
- Tønnessen, Ø., Dhir, A., & Flåten, B. T. (2021). Digital knowledge sharing and creative performance: Work from home the COVID-19 during pandemic. **Technological Forecasting** and Social Change, 170, 120866. https://doi.org/10.1016/j.techfore.2021.

120866

United Nations Development Programme (UNDP). (2021). Global Knowledge Index 2020.Dubai: United Emirates.

Sidharta.

- Venkatesh, V., Speier, C., & Morris, M. G. (2002). User acceptance enablers in individual decision making about technology: Toward an integrated model. Decision sciences, 33(2), 297-316.
- Venkatesh, V., Speier-Pero, C., Aljafari, R., & Bala, H. (2022). IT use and job outcomes: a longitudinal field study of technology contingencies. Journal of the Association for Information Systems, 23(5), 1184-1210.
- Vu, K., Hanafizadeh, P., & Bohlin, E. (2020). ICT as a driver of economic growth: A survey of the literature and directions future for research. Telecommunications policy, 44(2), 101922.
- Walsh, C., Knott, P., & Collins, J. (2022). The driving mindsets of innovation: Curiosity, creativity and clarity. Journal of Business Strategy, 43(2), 71-78. https://doi.org/10.1108/JBS-08-2020-0176
- Wang, C., & Hu, Q. (2020). Knowledge sharing in supply chain networks: Effects of collaborative innovation activities capability and on innovation performance. Technovation, 94, 102010. https://doi.org/10.1016/j.technovation.2 017.12.002

- Wang, Y., & Zhang, W. (2023). Factors Influencing the Adoption of Generative AI for Art Designing among Chinese Generation Z: A structural equation modeling approach. **IEEE** Access. 11. 143272-143284, https://doi.org/10.1109/ACCESS.2023. 3342055
- Watat, J. K., & Bonaretti, D. (2022). A Contextualization of the Technology Acceptance Model to Social Media Adoption Among University Students Cameroon. International Journal in Human of Technology and Interaction (IJTHI), 18(1),1-18. https://doi.org/10.4018/IJTHI.297619
- Wijewardhana, G. E. H., Weerabahu, S. K., J. Nanayakkara, L. D., & Samaranayake, P. (2021). New product development process in apparel industry using Industry 4.0 technologies. International Journal of Productivity and Performance Management, 70(8), 2352-2373. https://doi.org/10.1108/IJPPM-02-2020-0058
- Yow, Y. J., Ramsay, J. E., Lin, P. K., & Marsh, N. V. (2022). Dimensions, measures, and contexts in psychological investigations of curiosity: scoping review. Behavioral Sciences, 12(12), 493. https://doi.org/10.3390/bs12120493

Exploring the Impact of Inquisitiveness on Technology Adoption and Creativity on Work Efficiency: Insights from the Fashion Creative Industry in Bandung, Indonesia

Zhang, G., Shi, Y., & Gale, C. (2021). Co-design:

A novel approach to create value-added products in the creative fashion industry. Journal of Textile Engineering and Fashion Technology, 7(4), 134-141.